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AERONAUTIC SYMBOLS.
1. FUNDAMENTAL AND DERIVED UNITS

v Metric - ;-d . B ' English
Symbol — — - — - .
S .. . | Abbrevia- ik Abbrevia-
' . Unit : tion . , Unit .| tion -
Length____.. 1 metér-----Q..-------.’-Q "m | foob (or mlle)__'_;_»_‘__‘__‘ ft (or m1)
Time......._- t | seeond. o _laoa - 8. _ | second (or hour).____._}| see (or hr)
Yorceo—acn--. F Welght of 1 k]logram _____ kg - Welght of 1 pound _____ b -
Powei- _______ P horsepower (metrlc)__'..;_ s ,horsepower ___________ hp
So d -V {kilometers per hour....... ‘kph miles per hour_______ mph
Lot B - |lmeters per second.......| ~ mps | feet per second_______; fps ', :
o z GENERAL SYMBOLS . ,
: Welght mg : o ( - 7 - Kinematic v1scosﬂ:y o :
Standard accelera.tmn of gramty——Q 80665\m/s’ p . Density (mass per unit 7olume)

- or 82.1740 ft[sec“’
~ and,760 mm; or 0.002378 lb—ft“i sec? -

Mags="7> " : ' - S ecific. Welght of “standar it an', 1. 2255 kg/ma or

Moment of mertm—mk’ ~ (Indicate axis of 0 07651 Ib/cu ft’ - o
radius of gyration % by proper subscnpt) ‘ R

3. AERODYNAMIC SYMBOLS

- Avea . _k S - I . Angle of settlng of wmgs (relatlve to thrust hne)
“CAreaofwing . - . R Angle of sta,blhzel setting (rela,tlve to thrust
Gap 2 Lo ~ .. line) A
‘Span © @ . _Resultant moment
.Chord” R Resultant angular ‘velocity
Asoect ratio, fS' e T R . R~ Reynolds number, pl;—z wherelis. a,hnear dimen-
;True airspeed. T o - sion (e.g., for an airfoil of 1.0 ft,ohord, 100 mph,

: A ;- ' standard pressure at 15° C, the corresponding ' -
:Dynamic pressure, 2'0V2 o o Reynolds number is 935,400; or for an airfoil
e A - © of 1.0 m chord, 100 mps, the corresponding.

#, sbeol t 0=l - ps, ponding
Litt, absol Iute °°eﬁimen - 6;? " Réynolds number is 6,865 000) — :

o - a Angle of attack . :
;;ur%, absolute coeﬁment Co= 7S e Angle of downwash o .
.Proﬁle drag, absolute coeﬁiment OD();%-. o Angle of attack, infinite aspect ratlo
o RS o Angle of attack, induced , L
, 'Inched drag, absolute coeﬁiclent O, = D a Angle of attack absolute (measured from zero-
: i qS : - Lift position) - . - .
D, v  Flight-path angle

Parasite drag, a,bsolute coeﬁiclent Cpp= ©

Cross—wmd force, absolute coeﬂ"lclent Co= q(:;' :

Standard density of dry air; 0.12497 kg—m'*—s‘ &t 15° G,



TECH LIBRARY KAFB, NM

L]

0143159

REPORT No. 882

FREQUENCY-RESPONSE METHOD FOR DETERMINATION
OF DYNAMIC STABILITY CHARACTERISTICS OF
AIRPLANES WITH AUTOMATIC CONTROLS

By HARRY GREENBERG

Langley Memorial Aeronautical Laboratory
Langley Field, Va.




National Advisory Committee for Aeronautics

Headquarters, 1724 F Street NW, Washington 25, D. C.

Created by act of Congress appreved March 3, 1915, for the supervision and direction of the scientific study
of the problems of flight (U. S. Code, title 49, sec. 241). Its membership was increased to 15 by act approved
March 2, 1929. The members are appointed by the President, and serve as such without compensation.

Jerome C. Hunsakur, Sc. D., Cambridge, Mass., Chairman

ALEXANDER WETMORE, Sc. D., Secretary, Smithsonian Institution, Vice Chairman

Hon. JouN R. ArisoN, Assistant Secretary of Commerce.

Vannevar Busy, Sc. D., Chairman, Research and Development
Board, Department of National Defense.

Epwarp U. Conpon, Pu. D., Director, National Bureau of
Standards.

DonaLp B. Duncan, Viee Admiral, Deputy Chief of Naval
Operations (Air).

R. M. Hazen, B. 8., Chief Engineer, Allison Division, General
Motors Corp.

WirLiam Litruewoop, M. E., Viece President, Engineering,
American Airlines System.

TuroporE C. Lonnguust, Rear Admiral, Assistant Chief for
Research and Development, Bureau of Aeronautics, Navy
Department.

Epwarp M. Powers, Major Genceral, United States Air Force,
Deputy Chief of Staff, Matériel.

ArtEUR E. Ravymonp, M. 8., Viee President, Engineering,
Douglas Aircraft Co.

Francis W. REIcHELDERFER, Sc. D., Chief, United States
Weather Bureau.

Caru Spaatz, General, Chief of Staff, United States Air Force.

OrviLLe WricHT, Sc. D., Dayton, Ohio.

THEODORE P. WriGgHT, Sc. D., Administrator of Civil Aero-
nautics, Department of Commerce.

Joun F. Vicrory, LLM., Erccutive Secrelary

Hucu L. DrypEN, Pr. D., Director of Aeronautical Research

Joun W. CrowrLry, Jr., B. 8., Associate Director of Aeronautical Research E. H. CuamBirLIN, Ereculive Officer

Henry J. E. Rew, Sc. D., Director, Langley Memorial Aeronautical Laboratory, Langley Field, Va.
Smrty J. DeFrance, B. 8., Director Ames Aeronautical Laboratory, Moffett Field, Calif.

Epwarp R. Suarr, LL. B., Director, Flight Propulsion Research Laboratory, Cleveland Airport, Cleveland, Ohio

TECHNICAL COMMITTEES

OPERATING PROBLEMS
SeLr-PropreLLed Guibebd MissiLes
InpusTRY CONSULTING

ALERODYNAMICS
Powkr PLANTS FOR AIRCRAFT
AIRCRAFT CONSTRUCTION

Coordination of Research Needs of Military and Civil Avialion
Preparation of Research Programs
Allocation of Problems
Prevention of Duplicalion
Consideralion of Inventions

AMES AERONAUTICAL LABORATORY,

LaNGLEY MEMORIAL AERONAUTICAL LABORATORY,
Moffett Field, Calif.

Langley Field, Va.
FricuT PROPULSION RESEARCH LLABORATORY,
Cleveland Airport, Cleveland, Ohio

Conduct, under unified control, for all agencies, of scientific rescarch on the Sundamenital problems of flight

OrFICE OF AERONAUTICAL INTELLIGENCE,
Washington, D. C.

Collection, classification, compilation, and disservination of scientific and lcchnical information on acronautics

11



e

REPORT No. 882

FREQUENCY-RESPONSE METHOD FOR DETERMINATION OF DYNAMIC STABILITY
CHARACTERISTICS OF AIRPLANES WITH AUTOMATIC CONTROLS

By Harry GREENBERG

SUMMARY

A frequency-response method for determining the critical
control-gearing and hunting oscillations of airplanes with
automatic pilots 1s presented. The method is graphical and
has several advantages over the standard numerical procedure
based on Routh’s discriminant. The chief advantage of the
method is that direct use can be made of the measured response
characteristics of the automatic pilot. This feature is especially
useful in determining the existence, amplitude, and frequency
of the hunting oscillations that may be present when the auto-
matic pilot has nonlinear dynamic characteristics.

Several examples are worked out to illustrate the application
of the frequency-response method in determining the effect of
automatic-pilot lag or lead on critical control gearing and in
determining the amplitude and frequency of hunting. It s
shown that the method may be applied to the case of a control
geared to airplane motions about two axes.

INTRODUCTION

The increased use of automatic control on aircraft (espe-
cially on pilotless aircraft) has focused attention on the
proper design of the aircraft and associated control systems
with a view toward obtaining satisfactory dynamic stability.
The control system (autopilot) consists of the gyro, phase-
shifting device, and servomotor. Factors in the control
system that determine stability characteristics are control
gearing, lag in the servomotor, and lead in the phase-
shifting device. The stability characteristics of the air-
plane depend on airplane configuration and mass distribution.

The purpose of the present report is to give a method for
analyzing the dynamic stability of an airplane with auto-
matic control which makes direct use of the observed dynamic
characteristics of the automatic pilot (herein called auto-
pilot). The method separates the characteristics of the
autopilot from those of the airplane. It, therefore, easily
reveals the effects of modifications to the autopilot such as
adding lead. The procedure is largely graphical. The
method is similar in certain respects to that of Nyquist
(reference 1), which was devised for electronic circuits but
which has also been applied by some workers to the design
of servomotors.

The frequency-response method was previously applied by

826251—49

Jones (reference 2) to calculate the hunting produced in
airplanes with “flicker,” that is, on-off control. If the servo-
motor (herein called servo) has a linear lag characteristic
(lag independent of amplitude), then there will usually be an
upper limit to the control gearing above which the airplane
will be unstable. The frequency-response method deter-
mines this critical control gearing and the corresponding
frequency for any type of lag or lead in the autopilot. It
also indicates the changes to be made in the servo which will
improve the stability of the airplane.

The utility of the frequency-response method is most ap-
parent in the case of an actual servo with nonlinear lag
characteristics. This method allows the use of measured
characteristics of the servo that might be inconvenient to
represent by a mathematical formula.

TERMINOLOGY AND SYMBOLS

The word “lead” is used in this report in two ways. It is
the phase angle of control-surface deflection § ahead of air-
plane deflection, say angle of pitch 6, and it is also used to
indicate a device that causes an increase in the phase angle
of lead of & ahead of 6. These phasc-shifting devices are
herein called first-derivative lead and second-derivative lead.

The expression “lincar autopilot’ is used to indicate a servo
that is acted upon by a force proportional to the input signal
(airplane deflection) and resisted by a force proportional to
the displacement and velocity of the output (control-surface
motion).

The function of the automatic pilot is to apply a corrective
control deflection in response to any deflection of the air-
plane. The “control gearing” is the ratio of the applied con-
trol deflection to the airplane deflection for very slow
deflections (static condition). There may exist a ‘“critical
control gearing,”’ which in nearly all practical cases is an
upper limit beyond which dynamic instability occurs.

The following symbols are used:

a ratio of control deflection due to second derivative of
airplane displacement to that due to airplane
displacement

r ratio of control deflection due to first derivative of
airplane displacement to that due to airplane
displacement

1
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R amplitude of airplane oscillation produced by unit
amplitude oscillation of control surface

8 amplitude of control-surface oscillation required to
maintain unit amplitudeof airplane oscillations (1/R)

85 amplitude of control-surface oscillation produced by

autopilot in response to airplane oscillation, divided
by amplitude of airplane oscillation

3p, 8, for unit control gearing

k.. critical value of control gearing

k spring stiffness factor of servo and control surface

ks factor relating airplane deflection and force on servo

k control gearing, ratio of & to 6 in static condition
(a/Fer)

¢ viscous damping factor of servo and control surface

l viscous lag factor which depends on ¢ and #&; (¢/k1)

m mass of movable part of servo and control surface

t time, seconds

T period of oscillation, seconds

8 angle of control-surface deflection in direction to

reduce angle of pitch of airplane
phase angle of lead of & ahead of 6 when oscillating
airplane forces control surface to oscillate
€ phase angle of lead of & ahead of 8 when oscillating
control surface forces airplane to oscillate
6 angle of pitch of airplane
] signal fed into servo
) angle of bank of airplane
¥ angle of yaw of airplane
P gyro displacement produced by airplane deflection
w angular frequency, radians persecond (27 X Frequency)
w,  angular frequency of servo and airplane when k=*%.,,
radians per second

Wy natural angular frequency of servo, radians per second
T angle of tilt of gyro axis from X-axis of airplane

D differential operator (d/dt)

Subscript:

Mmer —maximum

BASIC PRINCIPLES OF FREQUENCY-RESPONSE METHOD

The response of the airplane to a sinusoidal control motion
may be measured in flight or may be computed from the
cquations of motion of the airplane. (See appendix A.)
The airplane response is sinusoidal and of the same frequency
as the control motion and has an amplitude and phase that
depends on this frequency. If the control motion is given by

d=sin wt
then the response in pitch, for example, may be expressed as
0=R sin (wl—¢,)

where B and e both depend on w, and R is the ratio of the
amplitude of 6 to the amplitude of § when the control surface
is forcing the airplane to oscillate. Changing the amplitude
of § produces a proportionate change in the amplitude of ¢
but does not affect the phase angle ¢,. The reciprocal of B

gives the amplitude of § required to sustain unit amplitude
oscillation in 6 and is denoted by §,; that is, if

=34, sin wt
then the response will be
f=sin (wf— €,)

A plot of 8, and ¢ against w is then made and is referred to
as the frequency response of the airplane.

The frequency response of the autopilot is obtained by
measuring or computing the response of the control surface
to a steady oscillation of the airplane. The response may
be calculated if the dynamic constants of the autopilot are
known, but it is usually easier to measure the response by
oscillating the autopilot in the laboratory. These calcula-
tions or measurements give the response to

f=sin wt
and this response is expressed by
§=10,, sin (wt+ e,)

where §, is the amplitude of § for unit control gearing and
e, is the phase angle of lead of 5 ahead of 8 when the airplane
is forcing the control surface to oscillate.

I{ at some value of the angular frequency w the condition

=€

exists, then the airplane connected to the autopilot will
oscillate continuously at this frequency at constant ampli-
tude, provided the control gearing is made equal to 8,/5, at
this value of w; that is, the critical control gearing is given by

—_— 67'_
b=y,
This condition of neutral stability is

An example of a solution
In this case w,=6.2 and

at w where e, =¢,.
shown schematically in figure 1.
for k., is shown in figure 2.

) . 0.33
ko=+ at this value of w; therefore k,,=557=0.36.
5, 0.91
Assumed
starting
point
6 =06, sin wt 9= sin (wt-€r)
" Airplore
|
|
|
|
|
|
|
I
|
t
|
|
|
R — Autopilot —
6=kép, sin (wt-€er+ep) O =sin (wt-€)
F1¢URE 1.—Response of airplanc to sinusoidal control motion and response of control to

sinusoidal airplane motion. 1f e;=e and k=k"=§i, the autopilot will sustain the
P

oscillations.
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Ficure 2.—Illustration of frequency-response method of determining critical control gearing.
wer=6.2; ker=0.36. (Dotted line indicates where ep=e.)

In almost all cases control gearings greater than k., result
in instability and control gearings less than k. provide
stability. Thus, k., is usually an upper limit to the permis-
sible control gearing. More generally, the stable side of
the boundary is determined by the relative slopes of the e,
and ¢, curves at their intersection. If %ﬁ—; is greater than

%’i; the system is stable below k., and vice versa. A proof
of this rule is given in appendix B.

In the preparation of figure 2 and the examples that follow
(figs. 3 to 8) a particular airplane configuration was assumed
for the computation of &, and e. (See appendix A for
methods.) This hypothetical pilotless airplane has four
fins 90° apart, a horizontal pair for pull-ups and a vertical
pair for turns. The fins constitute the only lifting surfaces
of the airplane and are equipped with ailerons connected to
a roll gyro and servo that maintain the airplane in a position
in which one pair of fins is always horizontal. The pitch
and yaw control surfaces are trailing-edge flaps on the fins
and are connected in pairs, one pair on the horizontal fins
connected to a pitch gyro and servo and the other pair on
the vertical fins connected to a yaw gyro and servo. It is
assumed that the pitch and yaw motions do not interact
with each other or with any accidental rolling motion that

826251—49——2
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F1GURE 3.—Eflect of lag in the servo on the frequency response of a critically damped linear

servo. Natural frequency of servo w,.=-?—-
may exist. Figures 2 to 6 show the elevator-pitch stability.
Rudder-yaw stability may be expected to be very nearly
the same as elevator-pitch stability because of the configura-
tion of the fins.

LINEAR AUTOPILOT

The motion of a control surface actuated by a simple linear
autopilot is similar to that of a mass-spring-dashpot and may
be represented by the equation

where each of the factors m, ¢, and k, is the sum of two parts,
one part due to the servo and one part due to the control
surface. For example, k; is the sum of the spring constant
of the servo and the aerodynamic hinge-moment constant
of the control surface. The term k)0 represents a force
proportional to the deviation in angle of pitch 6 applied
without lag.

Actually, the effect of control-cable flexibility is to intro-
duce an additional degree of freedom into the system. This
effect is probably small and may be taken into account
either analytically or by flight measurements as mentioned
in the section ‘‘Nonlinear Autopilot.”
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Figure 4.—Effect of first-derivative lead (r:-;—) in the autopilot on the frequency response

of a critically damped linear servo. Natural frequency of servo w,.=%-

Equation (1) may be expressed as

Cra ™\ _ke
a(1+le+le> . )

where ky/k, is the control gearing £. The natural frequency
of the servo is given by

ky
w,fzﬁ

and the damping depends on the quantity [= l% With these

substitutions, equation (2) becomes
2
5 (1+ZD+%>=M

The term ID represents viscous damping and the term
D?/w,? represents inertia reaction.

When the autopilot is oscillated in pitch, the control
response & lags behind 6. The lag usually decreases as the
lag factor I decreases and as the natural frequency w,

REPORT NO. 8832—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

3.2

2.8 \

a4

20
Unstable region

/V’

1.6 \

7
1.2 2
.8 ™
N7 =0 —
4 [~ —
0 04 .08 NE; /6 20 24

Lag factor, 1
FiGUure 5.—Effect of lag and lead on the critical control gearing with a critically damped

linear servo. Airplane characteristics of figure 2. 8=—1+%; ="

increases. It is convenient to choose w, equal to 2/I, a value
that gives critical damping. With this choice, the phase
angle ¢, and the relative amplitude for unit control gearing
5, of the response are presented in figure 3 for four values
of I. Values of §, and ¢, for the assumed airplane are also
given so that k. can be obtained for each value of .

If first-derivative lead is added to the system, the equation
of motion relating § and  becomes

5 (1+lD+%>=k(1+rD)0

Figure 4 shows 95, and ¢, for the same values of [ and w, as

figure 3, but with r=%- Comparison shows that the first-

derivative lead produces an angle of lead that approaches
90° at high values of the angular frequency . This amount
of lead is enough to override the lag for moderate values of ]
at low frequencies but not at high frequencies.

Values of k,, obtained from figures 3 and 4 are shown in
figure 5 plotted against the viscous lag factor{. Considerable
increase in the stable range of control gearing is evident for
small values of [ with the first-derivative lead. Note how
this improvement in stability diminishes at large values of .

If both first-derivative lead and second-derivative lead
are added, the response of the control is given by the equation

1+rD4+aD?
=
1--ID+2,

Wy

6=k



FREQUENCY-RESPONSE METHOD OF ANALYSIS OF AIRPLANES WITH AUTOMATIC CONTROLS 5
80 C
—1 T 1T -6,
» e sr_;l 7'=I %, 0=005 12 1= // -
&0 TN - L—t- =3 9p /
™~ .
. /
40 — V4
/ ™~
g 7
/ 3 ’
/ N6 r={_§ a=0 5§ 6 = e ya
g & —
L] 4 ,/ . P 6}’ . /]
N \ T T Tt~
g =20 \ / I’/ /74
™~
b,\ I} o 2 7] dp -1
< —gp N —r e~y »
£ ] =]
° T TTA
& -60 ] 40 7T\
| NIEN
-80 I /,{P; 7“:0, a=0 20 \\ 7 \\\\
[« NS T
~100 I ] o AN < \><’____\_<___ — e
W ~ =L
-— \ -
120 \ - 20 <
L/ i / ]
-/40 40 / Y
1
- 160, o —60 l
G4 & 12 16 20 27 28 52 36 0 | 3§
w, radions/sec - (73
F1GURE 6.—Effect of first-derivative lead and second-derivative lead on the lag of the servo : 60
. i+rD+aeD? S
as a function of frequency. 6=1‘+0m0—0025_1)’9'
. . wg‘—/OO \ I anaa':
It can be shown that if \ ! Ged) T
-120H —-—0a¢§
r>1 \ ] —
and ———g
9 r —/40
aw,*> ¢ (3) \ L/
—160,

lead will exist at all frequencies. In this situation the air-
plane cannot oscillate regardless of the value of £ or, stated
differently, the critical control gearing is infinite. Figure 6
shows the resultant lag or lead for a critically damped servo
for which w,=20 radians per second and for various values
of rand @. The top curve is for values of » and ¢ that satisfy
expression (3) and, therefore, result in lead over the entire
frequency range.

NONLINEAR AUTOPILOT
Even if the servo is constructed to give a response pro-

portional to a steady disturbance, its response to an oscillating
disturbance is not proportional in practice to the amplitude

of the disturbance because of the nonlinear dynamic character-

istics of the servo. The lag is then a function of both am-
plitude and frequency. By finding experimentally the
frequency response of the autopilot for a number of amplitudes
and for a given control gearing, it is possible to determine the
amplitude and frequency at which the airplane will oscillate
when coupled to the autopilot at that particular value of
control gearing. The condition for steady oscillations
(hunting) is that §,=3, and ¢,= ¢, at some frequency. The
frequency and amplitude of the steady oscillations of the
airplane are the values of w and 6,,, at which §,=é, and
€= €.

16 20 24 28 32 36 40
w, radians{sec

0 4 & 2

FiGuRE 7.—- Effect of amplitude on the frequency response of & servo, as measured on an
oscillating table.

The stability of these constant-amplitude oscillations has a
slightly different significance from that of linear systems.
In linear systems the oscillations are, in general, either
damped or undamped regardless of the amplitude. In the
case of the hunting that may exist with a nonlinear servo
the oscillations are said to be stable if, after a disturbance
from their steady value, they tend to return to that steady
value. The criterion for the stability of the steady oscilla-
tions follows from that for the linear autopilot and is

d a5
(Gr_ep) 0,
Go e 0

The solution obtained is not exact because the autopilot
response to sinusoidal airplane motion is not a pure sine wave
but is distorted; however, the existence and approximate
amplitude and frequency of hunting oscillations of the funda-
mental can be determined by the frequency-response method.
The values of §, and ¢, used when the response is not sinusoi-
dal are the values of the equivalent sinusoidal reponse which
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FIGURE 8.—Plot of 8p/8r and wer against fmaz obtained from figure 7, showing the amplitude
and frequency of the hunting.

supplies the same energy per cycle and the same impulse
per half cycle as the observed response. This condition leads
to the following expressions for e, and 8,:

JFB
p— 07"-(12
e,=tan™? g
where
w T2
A=§J; ) dt
T
B= 11? L 5do

The value of § in these i'ntegrals is the measured control-
surface deflection in response to an oscillating motion of the
airplane represented by 6=0pn,, sin wt. It turns out that B

is exactly equal to the cosine coefficient of the fundamental
frequency component of the Fourier series approximation
to §; however, A is not in general exactly equal to the first
sine coefficient of the Fourier series. Ordinarily the oscilla-
tion in pitch is performed in the laboratory by mounting the
autopilot on a table that can be made to oscillate.

A more exact method of determining the autopilot charac-
teristics, which includes the effects of control-system flex-
ibility and hinge moment, is to measure the response of the
control surface and airplane in flight to a sinusoidal input
signal to the servo. In order to obtain the frequency response
of the control system to sinusoidal input signal, it is necessary
to divide the vector output & by the vector sum of input
signal due to ¢ and input signal applied directly. Thus, the
dynamic characteristics of the airplane and control system
can be obtained at the same time. If the aircraft is not
available for flight tests, one can ‘“synthesize”” the complete
servo-control-system response from ground measurements of
the servo and estimates of control-system flexibility, inertia,
and aerodynamic hinge moments.

A typical application of the method for determining ampli-
tude and frequency of hunting of an aircraft and autopilot
with stops in the control system is shown in figures 7 and 8.
The airplane used in this example is slightly different from
that considered previously and, therefore, the §, and ¢, curves
are slightly different from those in figures 2 to 6. Figure 7
contains the phase and amplitude of the experimental
response of the autopilot plotted against frequency for a
series of amplitudes of the input and also the corresponding
calculated curves for the aircraft. For each amplitude the
values of 6, and &, are obtained at the frequency where
e,—¢,. The ratio §,/8, and the value of w., (where e,=¢,) are
plotted against amplitude of pitch 8, in figure 8. The ampli-

. o .
tude and frequency of hunting occur where 6—” =1. In this
T

example the amplitude of the hunting is about 2.5° and the
frequency is 18.7 radians per second.

Nonlinearity in the autopilot usually causes an increase of
lag with amplitude. This increase may result in a reversal of
the favorable effect of first-derivative lead as the lead factor
7 is indefinitely increased and suggests an optimum value for
r, a conclusion that is supported by flight experience. This
result may be traced to the counteracting effects of lead and
amplitude introduced by the first-derivative lead. The first-
derivative lead shifts the phase of the signal fed into the servo
so that the signal leads 6 by an amount tan™* 7w and increases
the amplitude of the signal by the factor y1+7%? The
change of lead with » may be stated symbolically as follows:
If the dependence of ¢, on 6 and » without first-derivative

lead is expressed by

e&=F(0, »)
then the addition of first-derivative lead changes the lead to
e,=1(0, w)+tan~'rw (4)
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where
0="0+/1+r%?
Differentiating equation (4) with respect to r gives
dey_ de, d T 722 w
& =5 dr \OV1+7% >+1+r2w2
de,  Bo®r w
—do 1 —}—r2w2+1+r2w ®)

If » 15 very small, the first term on the right-hand side of
equation (5) is negligible, so that %‘ is positive. The addi-
tion, therefore, of a small amount of first-derivative lead
results in a change in e, in the direction of more lead. A
similar analysis of the effect of » on §, shows that 2—7—6,”=0
when r=0. For small values of r, therefore, the effect of
adding first-derivative lead is the same as for the linear servo:
an improvement in dynamic stability and a reduction in the
amplitude of hunting is to be expected. Forlarge valuesof »,
however, the lag due to increase in amplitude (first term)
tends to counteract the direct lead (second term) and may
cause more violent hunting. Some optimum value of » may
therefore exist. A direct determination of its value may be
made from the autopilot for various values of r, 8, and w.
APPLICATION OF METHOD TO CONTROLS GEARED
TO MOTION ABOUT TWO AXES

Sometimes the aileron or rudder is geared to both the angle
of bank and the angle of yaw. Usually this gearing is ac-
complished by tilting the gyro in such a way that the rotation
of the gyro is affected by bank and yaw according (o the

formula
d=¢ cos T+y¢ sin 7

In order to apply the frequency-response method in this case
it is necessary only to calculate the response in bank and
yaw of the airplane to a sinusoidal control motion and to
combine them according to the preceding formula to obtain &.
This formula yields the §, and ¢ curves. The other pair
of curves required—the 5, and e, curves—are obtained in
exactly the same way as before, namely, by oscillating the
gyro about its sensitive axis. The critical control gearing so

al oo

determined will be the critical ratio between é and &.
CONCLUDING REMARKS

The frequency-response method of analysis is a useful
graphical means of determining oscillation characteristics of
an airplane equipped with an automatic pilot. If the servo
is linear (ideal case), the critical control gearing beyond
which increasing oscillations take place can be readily de-
termined. If the servo has nonlinear characteristics (prac-
tical case), the existence, amplitude, and frequency of steady
hunting oscillations can be determined approximately from
the measured frequency responsc of the servo and the com-
puted frequency response of the airplane.

In general, the usc of first-derivative lead (a phase-shifting
device) has a favorable effect on the dynamic stability.
Large amounts of first-derivative lead or phase shift may be
destabilizing due to the increase in the signal amplitude pro-
duced by this phase-shifting device.

LANGLEY MBEMORIAL AERONAUTICAL ILABORATORY,
NarioNal Apvisory COMMITTEE FOR AERONAUTICS,
LancrLeYy Fieup, Va., December 9, 1946.




APPENDIX A

CALCULATION OF RESPONSE OF AN AIRPLANE TO SINUSOIDAL CONTROL MOTION

The response of the airplane in pitch to sinusoidal elevator
motion will be used as an example. The basic equations are
derived in reference 3 but with somewhat different notation
and without the effects of control deflection, rate of change
of angle of attack, and power. The equations of motion,
for a given control deflection, are

(xyt+ D) u+x.+206=0

2 (2 + 7D+ (2p— D) 0= — 256 (A1)

(4
Cou (O, + Cop D)t (CugD = 547 12 D7) 0= = Crs

where
1 dT
== 5 qv
_m
T_—_p‘]A y
1
ra=—5 (C:—Ch,)
8
Tog=— 2L
27‘:01,
1
Za::"?'l (OLa_l'OD)
(', tan Ty
= P
(',
P57 Tl 2
b=t
Y ne?
oC
Y — 7 ~om
(/Ill.“ ‘ aV
a(]m
R
and

Ty trim angle of climb, deg
T thrust, Ib
I, pitching moment of inertia, slug-ft*

8

mass of airplane, slugs
wing chord, ft

wing area, sq ft

=AV/V

velocity, ft/sec

change in velocity, ft/scc
lift coefficient

angle of attack, radians
pitching-moment coefficient
drag coefficient

air density, slugs/cu ft

S A

©
T

Solving equations (A1) for g by the method of determi-

nants gives

rorD o 0
Zu Zo+1D — 25
6 | Cau, Cra,+Cup, D —Ch
6 |x.+7D L Xp
Zu 2at7D zg— 7DD
C, Cugt-Cop, D CupyD— 351, D2

Expanding these determinants by the usual methods gives
. . 0 . .

an expression for 5 consisting of the ratio of two polyno-

mials in D, which may be written as

6 a6 D4
6—02D4+b2[)3+C2D2+dZD+62
The phase and amplitude of the response of 6 to the motion

§=sin wt is obtained by substituting 7w for D in the above

. 0 . R .
expression for - This substitution gives a complex number,

6
say, A+iB. The angle of lead of 6 ahead of & is l,a,n‘li

and the amplitude of 8 is | 134 B?; that is

B
_ -1
6= —tan A

R= VA1 B

=R sin (wt—e,)

and




APPENDIX B

DETERMINATION OF STABLE SIDE OF STABILITY BOUNDARY OBTAINED BY FREQUENCY-RESPONSE METHOD

It is shown in the body of this report that a critical value
of the control gearing exists if at some frequency w the values
of ¢, and ¢, are equal and that the value of the critical control
gearing is equal to 8,/5, at that frequency. It will now be
shown that the stable side of the stability boundary may be
determined by the relative slopes of the ¢, and ¢, curves at
the point where e,=e¢,.

As shown in reference 2, the response of an airplane to any
disturbance may be computed from the “response function.”
The response to a sinusoidal disturbance is obtained by sub-
stituting ‘w for the variable D in the response function.
The response functions for the airplane and autopilot may
be combined to form the stability equation of the airplanc
plus autopilot as follows:

Let 8=f£(D)s be the airplane response function and
8=kf,(DD)8 be the autopilot response function where k is the
control gearing. Combining the two gives

5:kf2(D)f1 (D)5
or

l”kfz(D)fl (D) =

By substituting f(D)=f,(D)f,(D) this equation may be writ-

ten as
1—kf(D)=0 (B1)

This is the “stability equation,” the roots of which for the
variable D determine the damping and frequency of the
motion. The frequency responses are obtained from the
response functions by usc of the following:

fi (tw) =Retr= ; e ier

Jo(iw) = PR

Then & dynamic-stability boundary exists if 1—kf(4w)=0
for some value of », say w.. It follows from the definition
of f, and f, that this dynamic-stability boundary occurs when

e,—ep,=0
and
— ar P I
k—aﬂl—kc,

at some value of w=w,,. Under these conditions, equation
(B1) has a pair of roots D= - 1w., when k has the value given.
In order to find the stable side of the boundary, it is neces-

sary to find the sign of the real part of (filk) at the boundary.
From equation (B1)

dD__ f(D)
dk~ k(D)
This equation must be evaluated when D=iw,. At this
value of w, f(iwc,)='k;17- In general,
8
f(’l/w)=<‘;l) gi(r—"*")
Then
, df(iw) __ df(zw)
"D ="gtiw) — " dw
thercfore
14G)
df(%w) _ L d(ep er)] 3/
/Lw) w=wcr— cr w= w dw W=Ucr
and

(@) - :
Dk ), < )
/fcr.{ d(ep—er):] }

If [(l(ep - e,)] is negative, the real part of (fif is positive.

As k increases above the critical value, therefore, the roots
of the stability equation indicate instability; that is, if

[F].., <

then the stable region is located where k is less than k  and
vice versa.
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Positive directions of axes and angles (forces and moments) are shown by arrows

Axis 7 Moment about axis Angle | . Velocities
Forece - - '
. %para,}h)el ' . Linear
; s Sym- | 'O aXi8 . s Sym- Positive Degigna~ | Sym-| (compo- ’ o
Designation bol | symbol | Designation \"P0)" | Girection | = tion | bol |nent along|AnSUlaT| ... - -
. : - ) : .- . axis) . ‘ -
Longitudinal_..._._ X X | Rolling....... L | Y—>Z |Roll..... p u P
Lateral ... .....__ Y Y Pitching...... .M Z—X Pitch._...__ ] v - q
Normal ... e Z Z Yawing.......| N X—Y Yaw. Y w r

Absolute coefficients of moment Angle of set of control surface (relative to neutral

Cr— L =M C.— N position), 8. (Indicate surface by proper subserint.d
T gbS ™ geS " gbS - :

(rolling) - (pitching) - (yawing)
: ) 4. PROPELLER SYMBOLS

D Diameter - : . P
» Geometric pitch | P Power, absolute coefficient 0P=p—n3D5
p/D  Pitch ratio : . SoVe
v’ Inflow velocity C, Speed-power coeﬁiclent=J pP_n-2
V., - Slipstream velocity 7 Efficiency

T n Revolutions per second, rps

T Thrust, absol_ute qoeﬁicient 0T=1W

o oV
Effective helix angle=tan” ‘(2m)

. Torque,. absolutg,,coeﬁicient '0°='pn%“ :

. }j‘mwﬁQ«‘- -
_ 5. NUMERICAL RELATIONS
1 hp="76.04 kg-m/s=>550 ft-Ib/sec ' 1 1b=0.4536 kg
1 metric horsepower=0.9863 hp 1 kg=2.2046 Ib
1 mph=0.4470 mps . 1 mi=1,609.35 m=5,280 fb .
1 m=3.2808 ft

- 1| mps=2.2369 mph



